Student Name: _____

Teacher: _____

Sydney Technical **High School**

2023

HIGHER

SCHOOL CERTIFICATE

TRIAL EXAMINATION

Mathematics Extension 2

General Instructions

- Reading Time 10 minutes
- Working Time 3 hours
- Write using black pen.
- Calculators approved by NESA may be used.
- A reference sheet is provided.
- For questions in Section II, show relevant mathematical reasoning and/or calculations.
- · Marks may not be awarded for careless work or illegible writing.
- Begin each question on a new page.

Section I – 10 marks Total Marks:

100

- Attempt Questions 1 10 •
- Allow about 15 minutes for this section. •

Section II – 90 marks

- Attempt Questions 11 16
- Allow about 2 hours and 45 minutes for this section •

Section I

10 marks Attempt Questions 1 – 10. Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1 - 10.

The magnitude of the vector $u = a_{i} - 6_{j} + 8_{k}$ is 12. 1

What is a possible value of a?

- $2\sqrt{11}$ Α.
- $11\sqrt{2}$ Β.
- C. 44
- 2 D.
- Which expression below is equivalent to: $\frac{4e^{-\left(\frac{5i\pi}{6}\right)}}{2e^{\left(\frac{i\pi}{2}\right)}}$? 2
 - $-1 \sqrt{3}i$ Α.
 - B. $-1 + \sqrt{3}i$
 - C. $1 \sqrt{3}i$
 - D. $1 + \sqrt{3}i$
- 3 Choose one of the statements to describe the relationship between P and Q. $Q: n^2 = 64$ P: *n* = 8
 - A. $P \Leftrightarrow Q$
 - B. $P \leftarrow Q$
 - C. $P \Rightarrow Q$
 - D. $\neg P \leftarrow Q$

- 4 The vectors $\underline{u} = 6\underline{i} 2\underline{j} + p\underline{k}$ and $\underline{v} = 2\underline{i} + p\underline{j} + 3\underline{k}$ are perpendicular. What is the value of p?
 - A. -12B. $-\frac{12}{5}$ C. $\frac{12}{5}$
 - D. 12
- 5 The Argand diagram shows the rectangle *OABC* where OC = 4OA. Vertex *A* corresponds to the complex number *w*. Which of the following complex numbers corresponds to vertex C2

Which of the following complex numbers corresponds to vertex C?

- A. −4*iw*
- B. 4*iw*
- C. −4*w*
- D. 4*w*
- 6 A particle is moving along the x axis in SHM. The displacement of the is x -metres, The particle is at rest when x = -2 and again, when x = 8. It takes 6 seconds for the particle to move from x = -2 to x = 8. What is the maximum velocity of the particle?

A.
$$\frac{5\pi}{6}$$
 m/s
B. $\frac{4\pi}{3}$ m/s
C. $\frac{5\pi}{3}$ m/s
D. $\frac{10\pi}{3}$ m/s

7 The complex number z = 3 + 4i is shown.

8 The two possible values of $Re(\sqrt{i}) + |Im(\sqrt{i})|$ are:

- A. -1,1
- B. 0,√2
- C. 0, 1
- D. 1,√Z

9 The parametric equation of the curve shown is:

A. $x = t^2$, y = t, z = 1B. x = sint, y = cos2t, z = tC. x = sint, y = cost, z = 1D. x = sint, y = cost, z = t

10 The value of

$$\int_{1}^{5} (x-1)\sqrt{5-x} \, dx$$

A.
$$\frac{96}{5}$$

B. $\frac{16}{3}$
C. $\frac{208}{15}$
D. $\frac{128}{15}$

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section.

Answer each question in the writing booklet. Extra writing paper is available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start this question at the top of a <u>NEW</u> page.

(a) Express
$$\frac{2+i}{3-i}$$
 in the form $x + iy$, where x and y are real numbers. **2**

(b) Find the value of *m* given that *i* is a root of the equation, $z^2 + mz + (1 - i) = 0$ 2

(c) i. Write the complex number
$$-\sqrt{3} - i$$
 in exponential form. **2**

ii. Hence, find the exact value of
$$(-\sqrt{3}-i)^{16}$$
 in the form $x + iy$.

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \sqrt{1 - \sin 2x} \left(1 - 2\cos^2 x\right) dx$$

(e) Find, $\int \sin^2 2x \sin x \, dx$.

Page 6 of 12

Question 12 (15 marks) Start this question at the top of a <u>NEW</u> page.

- (a) For integer n, use the contrapositive, or otherwise, to prove the following statement: "If n^2 is even, then n is even".
- (b) A triangle is formed in three dimensional space with vertices A(1, -2, 3) B(2, 3, 1) and C(-1, 3, 2)
 Find the size of ∠ABC, correct to the nearest degree.
- (c) Use the substitution t = tanx, and find: $\int \frac{dx}{3\cos^2 x + \sin^2 x}$
- (d) Let l_1 be the line with equation $\underline{r} = (-\underline{\imath} + 2J) + \lambda(2\underline{\imath} + 5J), \lambda \in \mathbb{R}$.

The line l_2 passes through the point A(1, -2) and is parallel to l_1 . Find the equations of l_2 in the form y = mx + c.

(e) Let $a = \omega$ and $b = \omega^2$ be the two complex cube roots of unity. **3** If x = 9a + 5b and y = 5a + 9b, then evaluate xy.

Question 13 (15 marks) Start this question at the top of a <u>NEW</u> page.

(a) i. Decompose
$$\frac{1}{(x^2)(2x-1)}$$
 into partial fractions. 3
ii. Hence, $\int \frac{1}{(x^2)(2x-1)} dx$. 2

- (b) Find the least positive integer k such that $\cos\left(\frac{4\pi}{7}\right) + i\sin\left(\frac{4\pi}{7}\right)$ is a solution to $z^k = 1.$
- (c) Show that the complex number w is a solution of $z^n = 1$, then so is w^m , where m and n are both arbitrary integers.
- (d) The probability density function describing the likelihood of a continuous variable occurring is given by the function.

$$f(x) = \begin{cases} k(sinx + cosx) & -\frac{\pi}{4} \le x \le \frac{3\pi}{4} \\ 0 & elsewhere \end{cases}$$

- (i) For the domain of $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, express f(x) in the form $Rsin(x + \alpha)$, where R > 0 and α is acute.
- (ii) Calculate the mean of this distribution. **2**
- (iii) Calculate the variance of this distribution. 2

2

Question 14 (15 marks) Start this question at the top of a <u>NEW</u> page.

- (a) Write the negation of the statement P: "I am beautiful and tall" 2
- (b) Consider the complex number $z = cos\theta + isin\theta$
 - (i) Using De Moivre's theorem, show that.

$$z^n + \frac{1}{z^n} = 2cosn\theta$$
, for $n \in \mathbb{Z}$ 2

(ii) Hence or otherwise express $(z + \frac{1}{z})^6$ in the form

$$Acos6\theta + Bcos4\theta + Ccos2\theta + D$$
 where $A, B, C, D \in \mathbb{R}$ 2

(iii) Hence, evaluate
$$\int_0^{\frac{\pi}{6}} \cos^6 \theta \, d\theta$$
 2

(c) A particle is oscillating in simple harmonic motion such that its displacement x metres from a given 0 satisfies the equation $\ddot{x} = -4(x + 2)$, where t is the time in seconds.

(i)	If the particle is initially at rest at $x = 2$, show that the speed v m/s of a particle	
	moving along the x-axis is given by $v^2 = 48 - 16x - 4x^2$.	2

- (ii) Find the displacement of the particle after *t* seconds of motion. **3**
- (d) Sketch the graph of $\left|z \sqrt{2}e^{\frac{\pi}{4}i}\right| < 2$ on an argand diagram. **2**

Question 15 (15 marks) Start this question at the top of a <u>NEW</u> page.

- (a) (i) By choosing a suitable substitution, show that, $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a - x) dx.$
 - (ii) Hence, or otherwise, determine the value of. 2 $\int_{0}^{1} x^{2} \sqrt{1-x} dx$
- (b) A particle of mass 4 kg moves in a straight line such that at time *t* seconds its Displacement from a fixed origin is *x* metres and its speed in $v m s^{-1}$. The resultant force F is given as $F = 16 - 4v^2 N$.
 - (i) Find an expression for x as a function of v, given that the particle starts at the origin with $v = 0 m s^{-1}$.
 - (ii) Find an expression for v as a function of t and hence find the displacement of the particle after 3 seconds.
- (c) The sequence $\{x_n\}$ is given by $x_1 = 1$ and $x_{n+1} = \frac{4+x_n}{1+x_n}$ for $n \ge 1$
 - (i) Prove by Mathematical Induction that for $n \ge 1$,

$$x_n = 2\left(\frac{1+\alpha^n}{1-\alpha^n}\right)$$
 where $\alpha = -\frac{1}{3}$ 4

(ii) Hence find the limiting value of x_n as $n \to \infty$ 1

2

2

Question 16 (15 marks) Start this question at the top of a <u>NEW</u> page.

(a) Given that *n* is an integer that is **not** divisible by 3, prove that $n^2 + 6n + 2$ is a multiple of 3.

(b) Let
$$I_n = \int_0^1 (1-x^2)^n dx$$
 and $J_n = \int_0^1 x^2 (1-x^2)^n dx$.

(i) Show that
$$I_n = 2nJ_{n-1}$$
 2

(ii) Show that
$$I_n = \frac{2n}{2n+1} I_{n-1}$$
 2

(iii) Show that
$$J_n = I_n - I_{n+1}$$
, and hence deduce that $J_n = \frac{1}{2n+3}I_n$ 2

(iv) Hence write down a reduction formula for J_n in terms of J_{n-1} .

Question 16 continues on the next page......

(c) The diagram shows isosceles triangle *ABP* where *AP* = *BP* and $\angle APB = \alpha$. PM is the altitude of triangle.

Suppose that A and B represent the complex numbers z_1 and z_2 respectively.

(i) Find the complex number represented by:

 $\alpha. \ \overrightarrow{AM}$

 β . \overrightarrow{MP}

(ii) Hence show that P represents the complex number:

$$\frac{1}{2}\left(1-i\cot\frac{\alpha}{2}\right)z_1 + \frac{1}{2}\left(1+i\cot\frac{\alpha}{2}\right)z_2$$

END OF TASK

2

STHS - EXTENSION 2 – SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER
[Section 1]
1. A . 2. B 3. C 4. A 5. B
6. (A 7. A 8. B 9. D 10. D.
Solutions: multiple choice
$1, \sqrt{a^2 + 3b + 64} = 12 \qquad 2, 2e^{-\frac{b^2}{2} - \frac{b^2}{2}} = 2e^{-\frac{b^2}{2}}$
$a^{2} + 100 = 144$ = $a(\cos \frac{2\pi}{3} + i\sin \frac{\pi}{3})$
$a = 2/11 (A) = 2(-\frac{1}{2} + \frac{1}{2})$
$3. \ n = \% \ n^2 = 8^2 \qquad \qquad = -[+732] (8)$
but $n^2=64$. $n=18$ 4. $u \cdot v = 0$ $12 - 2p + 3p = 0$
$ \begin{array}{c} \cdot \cdot \cdot P \Rightarrow Q \end{array} \begin{array}{c} \\ \hline \end{array} \end{array} $
5. 6/90° and ×4 , 1 0 C = 4 W after notation
$=4i\omega$ (B)
6. 1 maxvel @ centre.
a=5 $n=12$ $n=16$
$\frac{1}{1} = \frac{1}{12} \left(\frac{a}{a} - \frac{(x-a)}{(x-a)} \right)$
$\frac{1}{3b}\left(25 - (2 - 3)\right) = \frac{1}{2} \frac$
$\sqrt{-\alpha 3^{-1}} \frac{36}{36} \frac{1}{10} \frac{1}{6} \frac{1}{10}$
$+, \circ \qquad l^{-} = -l$
$8, \forall i = 2 + iq \rightarrow l = 2^{-} + 22q \cdot -q$
$z = y \qquad z = y \qquad y = \frac{1}{2} $
$\frac{1}{\sqrt{2}} = \sqrt{2} + \sqrt{2} = \sqrt{2}$
$a = \int $
$\frac{1}{2} \frac{1}{2} \frac{1}$
$\frac{1}{1} = \frac{1}{2} - \frac{1}{2} + \frac{1}$
$-\int_{0}^{\pi} 4\pi - u \sqrt{u} du = \frac{128}{15}$

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER DuestionII .2 b) $i^2 + mi + (1 - i) = 0$ a) $\frac{2+i}{3-i} \times \frac{3+i}{3+i}$ -1 + i(m+1) + 1 = 0= 6+5i-1 m = 19+1 $= \frac{5+5\ell}{10} = \frac{10}{12} + \frac{1}{12}\ell$ 1 2e-517/61 (1)= 2¹⁶ e⁻⁴⁰T/3^L c) - 13 - i $= 2^{16} Cos^{2\pi}/3i$ = 2¹⁶ Cos^{2\pi} + isin^{2\pi}/3 = 2¹⁶ - 1/2 + i \sqrt{3}/2 = 2¹⁵ (-1 + 13i) = 2e - STT6 d) $\left(\frac{T/2}{\sqrt{1-\sin 2\alpha}} \left(1-2\cos^2\alpha\right)d\alpha\right)$ -π/4 let u= 1-sin2x 1) $du = -2\cos 2x dx$ Tu, du $du = (1 - a \cos^2 a c) da$ 10 2 412 du 2L=T1/2 U=1-SINO 1/2 . 5 | $= \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$ $\chi = \pi/4$ $\mu = 1 - 5 \ln \pi/2$ -0 17 (1-0)= 1/3 Can

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER SIDZY QU Sin² 2x, sin, x dx d) (11) = 2SINXCOSTL = $\int 4\sin^2 \alpha \cos^2 \alpha \sin \alpha d\alpha$ $= 4 \int \cos^2 x \sin^3 x dx$ = 4 $\left(\cos^2 x \left(1 - \cos^2 x \right) \sin x \right) dx$ $=4\left(u^{2}\left(1-u^{2}\right) ,-du\right)$ (et N=COSX $= 4 \left(u^2 \left(u^2 - 1 \right) du \right)$ au=-sinxdx $=4\left[\frac{u^5-u^3}{5}\right]$ $= \frac{4}{5} \cos^5 x - \frac{4}{5} \cos^3 x + C$ 49

SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER Question/2 Contrapositive statement: if n is odd then nº is also odd let n be an odd number where n=2p+1, pEZt Now $\Lambda^2 = (2p+1)^2$ $=4p^{2}+4p+1$ $= 2(p^2 + 2p) + 1$ = 2q + 1 where $q = 2p^2 + 2p$ which is odd o': If n is odd then n2 is also odd ie if n2 is even then n is even. $\overrightarrow{BA} = \begin{pmatrix} -1 \\ -5 \end{pmatrix} \qquad \overrightarrow{BC} = \begin{pmatrix} -3 \\ 0 \end{pmatrix}$ 6) $\frac{-7}{C} = \frac{-7}{BA \circ BC} = \sqrt{1+25+4} \times \sqrt{9+0+1} \quad Cos = 0$ 3+0+2 = 130, To coso 5 = 10/3 (asta)COS = 1/25 ₽ = 73-12'- - 273° Now $\int \frac{3}{t^2+1} + \frac{t^2}{t^2+1} = \frac{1}{t^2+1} dt$ c) t = tanx6 +2+1 $= \int dt$ at = sec2 x dx = 1/3 ten-1 (4/13) = 1/3 tan 1 tan x + C cos22 dt = dd $\frac{1}{+2+1}dt = dx$

TENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC parallel .: same direction vector $f_2 = (x) = (1) + \mu(2)$ $x = 1 + 2\mu$: $\mu = x - 1$ $y = -2 + 5\mu$ and $y = -\lambda + (\frac{2-1}{2}).5$ y = z - 2 + 5z - 5 $y = \frac{5x}{2} - \frac{9}{4}$. · · · · · e) in and w² are the 2 complex cube coots of unity $\frac{\omega^{3} = 1}{(\omega^{-1})(\omega^{2} + \omega + 1) = 0} \qquad b = \omega^{2}$ $\frac{\omega^{2} + \omega = -1}{\omega^{2} + \omega = -1} \qquad b^{2} = \omega^{4}$ $= \omega \times \omega^{3}$ $w^3 = 1$ xy = (9a + 5b)(5a + 9b)= 45a² + 8/ab + 25ab + 45b² $= 45(a^2 + b^2) + 106ab$ Now $a = \omega = 6 = \omega^2$ $=45(\omega^{2}+\omega^{4})+106\omega.\omega^{2}\omega^{3}=1$ $= 45(\omega^2 + \omega) + 106$ = 45(-1) + 106= 61

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER Question 13 $= A(\pi)(2\pi - i) + B(2\pi - i) + C(\pi^2)$ let x=0 $l = \mathcal{B}(-r) \qquad \mathcal{B} = -l$ let x = 1/2 $l = c(1/2)^2$ c = 4 $\frac{|et x = -1 \quad or \quad coeff \quad of \quad x^2}{=}$ = 0 = aA + C $0 = 2A + 4 \qquad A = -2$ $(1) \int f(x) dx = \int -2 -1 + 4 dx$ $= -2\ln|x| + 1 + 2\ln|2x-1| + C$ $= \frac{1}{\sqrt{1+dln}} \frac{2x-1}{1+C}$ b) 1) $2^{k} = cis(0 + a \pi n) n \in \mathbb{Z}$ $\therefore Z = Cis(0+2\pi n)$ when n=2, k=7 cis $\left(\frac{4\pi}{7}\right)$ is a solution ... k=7 is the smallest integer value of sif wis a soln to Zn=1 then wh = 1 Now $(\omega^n)^m = j^m \qquad j^m = l$ l_{N} nm = 1 $(\omega^m)^n = 1$ v° w^m is a solⁿ to $z^{n} = 1$.

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAI a) k(sinx + cosx) = R sin(x+a) d = T/4 by inspection. (aux L technique) $\int \frac{R\sin(x+\alpha)}{-\pi/4} = 1 \quad \text{as a PDF}$ $-\cos(x + \pi) = \frac{3\pi}{4}$ $\frac{-\cos\left(\frac{3\pi}{4}+\frac{\pi}{4}\right)}{-\cos\left(\frac{3\pi}{4}+\frac{\pi}{4}\right)} - \frac{-\cos\left(\frac{3\pi}{4}+\frac{\pi}{4}\right)}{-\cos\left(\frac{3\pi}{4}+\frac{\pi}{4}\right)} - \frac{1}{2}$ -(-1) + 1 = 1/2a = VRR = 1/2 $f(x) = \frac{1}{2} \sin(x + \frac{\pi}{4}) - \frac{\pi}{4} \le x \le \frac{3\pi}{4}$ $M = \int 2f(x) dx$ = $\int \frac{3\pi}{4} \frac{1}{2} x \sin(x + \frac{\pi}{4}) dx$ = $\int \frac{-\pi}{4} \frac{1}{2} x \sin(x + \frac{\pi}{4}) dx$ (1) = 1/2 - 2 cos (x+1/4) - (-1 cos (x+1/4) dx = 1 - 26 cos (x + T/4) + (Cos (x + T/4) dx = 1/2 - 2 cos(2+TT/4) + Sin(2+TT) - TT/4 = 4 [-(==)cosT + 0 - [-(-==)cosO + 0] = 1 3TT/4 - TT/4 0 Seal

 d_{m} $Var(x) = \int x^2 f(x) dx - m^2$ $\int x^2 f(x) dx = \frac{1}{2} \left(\pi^2 s \ln \left(\frac{x + \pi}{4} \right) dx \right)$ $= \frac{1}{2} \left(-\lambda^2 \cos\left(\chi + \frac{\pi}{4}\right) + \left(2\lambda \cos\left(\chi + \frac{\pi}{4}\right) d\chi \right) \right)$ $=\frac{1}{2}\left[-\chi^{2}\cos\left(\chi+\frac{\pi}{4}\right)+2\chi\sin\left(\chi+\frac{\pi}{4}\right)-\left(2\sin\left(\chi+\frac{\pi}{4}\right)A_{X}\right)\right]$ $=\frac{1}{2} - \chi^2 \cos\left(x + \frac{\pi}{4}\right) + 2\pi \sin\left(x + \frac{\pi}{4}\right) + 2\cos\left(x + \frac{\pi}{4}\right)$ $\frac{-9\pi^{2}}{4t}(-1) + 0 + 2(-1) - \frac{\pi^{2}}{4t}(1) + 0 + 2$ $=\frac{1}{2}\left[\frac{9\pi^2}{16}-2+\frac{\pi^2}{16}-2\right]$ $\frac{1}{2} \left[\frac{5\pi^2}{8} - 4 \right]$ = 5772 - 2 a^{n} , $Var(x) = 5\pi^{2} - 2 - (1-\pi)^{n}$ $= \frac{\pi^2}{4} - \frac{1}{2}$

EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL Question 14 a) P: I am beautiful and tall 7 P: lan not tall or lan not beautiful 6 rettor 7P I am not beautiful or I am not tall b) $z = cis \theta$ $2^{n} = cis \wedge \theta$ $\frac{1}{2^{n}} = 2^{-n} = cis(\pi \theta)$ $\frac{2^{n}}{2} + \frac{1}{2^{n}} = cisne + cis(-ne)$ = LOSAD + isinAD + COS(-NO) + isin(-no) Cost-2)=losa is even (inl-a) = -sind is odd = . COOND + isin NO + cosno - ismno = 2WSNZ = 2 cos 60 + 6 (2 cos 40) + 15 (2 cos 20) + 20 = 2 ws by + 12 ws 4+ + 30 cs 2+ + 20 III) $(2+1/2)^6 = (2\cos\theta)^6 = 64\cos^6\theta$ 111)r. (16 Costo da =1 6 26560 + 12 cos 40 + 30 Gs 20 + 20 da = $\frac{1}{3} \sin 6 + 3 \sin 4 \theta + 15 \sin 2 \theta + 2 \theta \theta$ $= \frac{1}{64} \int \sin \pi + 3 \sin \frac{2\pi}{3} + 15 \sin \frac{\pi}{3} + 24\pi - 10$ = (0 + 3x v3/2 + 15. 0/2 + 10T/2) × 164 $= \left(9\sqrt{3} + 10\pi \right) \circ \frac{1}{64} = 9\sqrt{3} + 5\pi \\ 3 \sqrt{64} + 64 = 96$ nº Yr.

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPE $(1+c) \quad \dot{x} = -4(x+2) \quad \text{centre } \dot{x} = 0$ y = -2n = 2 $d/_{1} \times (1/_{2} \vee^{2}) = -42 - 8$ 1/2 v2 = (-4x -8 dx $1/2 \sqrt{2} = -2\chi^2 - 8\chi + c$ $V = 0 \chi = 2$ $\frac{1}{2}(4) = -2(4) - 8(2) + C$ c=24 $\frac{1}{2}v^2 = -2x^2 - 8x + 24$ $y^2 = -4y^2 - 1620 + 48$ $V^2 = 48 - 16x - 4x^2$ NED (1) SHM V = 0 $\alpha = 4$ X=2 t=0 n=2 modelled by equation X= a cos(nt+x) # -2 $\chi = 4 \log(at + a) - 2 \qquad \chi = 2$ 250 $X = 4\cos(2t) - 2$ $\frac{1}{\sqrt{2e^{\pi/4i^{2}}}} = \sqrt{2} \operatorname{Cis} \frac{1}{4} = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$ $= \sqrt{2} \left(\sqrt{52} + i \sqrt{52} \right)$ $= \sqrt{4} + i$ 2.2 : 2-(1+i)

FNSION 2 - SAMPLE SOLUTIONS 2023 TRIAL Question 15 a) i) $\int a f(x) dx$ let x = a - u $\mathcal{X} = \mathcal{Q}, \quad \mathcal{U} = \mathcal{D}$ dy = -du y = 0 u = a·· (° f (a-xi). - du - (° f (a-24) du say $\int_{0}^{a} f(a-u) du = \int_{0}^{a} f(a-x) dx \qquad as definite$ $\int_{0}^{a} f(a-u) du = \int_{0}^{a} f(a-x) dx \qquad as definite$ f(x) a value"dunmy Uarable $\int_{-\infty}^{1} x^2 \sqrt{1-x} dx$ $\int_{D} (1-x)^2 \sqrt{1-(1-x)} dx$ $= \left(\frac{1}{2} \left(1 - 2\alpha + \alpha^2 \right) \sqrt{3} \right) d\alpha$ = (1 Ja - 2x Jx + 22 Jx da = S = 21/2 - 22 3/2 + 2 5/2 da $= \frac{2}{3} \frac{3/2}{5} - \frac{4}{5} \frac{\sqrt{5}}{2} + \frac{2}{7} \frac{\sqrt{7}}{7} \frac{1}{5}$ = 2/3 - 4/5 + 2/7 - (0) - 16/105 b) $F = mx = 16 - 4v^2$ m = 4kg X = Vdvdx $\frac{4 \sqrt{dv}}{dx} = \frac{16 - 4v^2}{4v^2}$ $\frac{dv}{dx} = \frac{4 - v^2}{v} \quad i. \ dx = v$ VED Fe 13 $bn4 = \frac{1}{2}bn[4-v^2] = \frac{1}{2}bn[4-v^2] + Cn = \frac{1}{2}bn$

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPEL $4\ddot{\chi} = 16 - 4\dot{\chi}^2$ F = $X = 4 - v^2$ $\frac{dv}{dt} = 4 - v^2$ $\frac{1}{(2-1)(2+1)} = \frac{A}{2-1} + \frac{B}{2+1}$ $\frac{dt}{dt} = \int \frac{1}{4 - v^2} dv$ $\frac{1}{1 + A(2+v) + B(2-v)}$ $\frac{1}{1 + B(4)} = \frac{1}{4}$ $t = \int_{0}^{V} \frac{1}{(2-v)(2+v)} dv$ 107 V=2 1 = A(4) = 1/4 $= \frac{1}{\sqrt{9}} \frac{1}{2-\sqrt{2}} + \frac{1}{2+\sqrt{2}} \frac{1}{4} \frac{1$ $=\frac{1}{4} \left(\frac{V}{2} + \frac{1}{2} + \frac{1}{2} \right) \frac{dV}{2}$ $= \frac{1}{10} \left[-\frac{1}{10} \left[\frac{2}{2} - \frac{1}{10} \right] + \frac{1}{10} \left[\frac{2}{2} + \frac{1}{10} \right] + \frac{1}{10} \left[\frac{2}{2} + \frac{1}{10} \right] + \frac{1}{10} \left[\frac{2}{10} + \frac{1}{10} \right]$ $\frac{-1}{4} \left[-\ln \left| 2 - V \right| + \ln \left| 2 + V \right| - \left(-\ln 2 + \ln 2 \right) \right]$ $4t = ln \left| \frac{2+v}{2} \right|$ $\rho 4t = 2+V$ $(2-v)e^{4t} = 2 + v$ $2e^{4t} - ve^{4t} = 2 + v$ $2e^{4t} - 2 = V(1 + e^{4t})$ $V = 2(e^{4t}-i)$ $t=3 \quad V=2(e^{12}-1) \rightarrow \text{Now find } X \quad \text{woing (1)}$ $1+e^{12} \quad X=\frac{1}{2}\ln 4 - \frac{1}{2}\ln [4-v^2]$

Pape 14

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER	
(5c) ·	
test n=1.	
2(1+(-1/3))'	
$= \left(\frac{1}{1 - (-\frac{1}{3})} \right)$	
$= 2 ^{2}/3 \rangle$	
$\left(\frac{4}{3}\right)$	
$= 2 \times 1/2$	
=	
= 21 as given .: the statement is true for n=1	
Assume time for n= K	
ie $\chi_{R} = 2 \times (1 + \alpha^{R}) \qquad \alpha = \frac{1}{3}$	
$\left(\overline{1-\alpha^{k}}\right)$	
Test from=K+1	
ie XK+1 = 4 + XK Now use the assumption.	
1 + x k	•
$= 4 + 2 \left(1 + \alpha^{k} \right)$	
$(1 - \alpha k)$	
$+2(1+\alpha h)$	
(1-2k)	
$= 4(1-2^{k}) + 2(1+\alpha^{k})$	
$1 - \omega^{k} + 2(1 + \omega^{k})$	
$= 4 - 4 \alpha^{k} + 2 + 2 \cdot \lambda^{k}$	
l - d k + 2 + 2 d k	
$= 6 - 2 \alpha^{k}$	
$3 + \alpha^{k}$	
$= 2 \left(3 - \alpha^{h} \right)$	L
$\left(\frac{3+\alpha h}{3+\alpha h}\right)$	٢

	d = 3 - d = -3 d = -3
	$-3+\alpha^{k}$ $\div -3$
	$2 \left[-1 - (-\frac{1}{3})^{k} (-\frac{1}{3}) \right]$
	-1 + (-1/2)k(-1/2)
	$-1 + (-1/3)^{\mu}$
	$= \frac{1}{2} - \left(1 + \left(\frac{-1}{3}\right)^{(l+1)}\right)$
	$-1(1-(-1/3)^{k+1})$
	$= 2 \left[1 + \alpha^{k+1} \right]$
	$1 - \chi h + i$
	whath is in the form required is if n=k it is also
· Aut	$h_{n} = -k_{n+1} + \frac{1}{2} + \frac{1}{$
14 100	he for for the for the for the for the for the for the former that the former
, ,	tra time for all nez.
Now	
(11)	$\chi_n \rightarrow 2$ as $n \rightarrow \infty$
2	as $\alpha^{n} \rightarrow 0$ as $\alpha = \frac{1}{2}$

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER	
Question 16.	
a) consider cases not + by 3 is remained	hr lor 2
consider cases of n=3p+1	3p-1. PEZ*
Casel $n = 3p + 1 p \in 2^+$	could test
$n^2 + 6n + 2$	$n=3p+1 \propto$
$= (3p+i)^{2} + 6(3p+i) + 2$	n=3p+2
$= 9p^{2} + 6p + 1 + 18p + 6 + 2$	p≥0
$= 9p^2 + 24p + 9$	
$= 3(\rho^{2} + 8\rho + 3)$	
= 3q where b q = p2 + 8p + 3 . 6	= 2
which is = by 3	wei
Case 2	
$\Lambda = 3\rho - h$ $\rho \in \mathbb{R}^{+}$	
n ² +6n+2	
$= (3\rho - 0)^{2} + 6(3\rho - 1) + 2$	
$= 9p^2 - 6p + 1 + 18p - 6 + 2$	
$= 9p^2 + 12p + 3 - 6$	
$= -9\rho^2 + 2\rho - 3 $	
$= 3(3\rho^2 + 4\rho - 1)$	
$= 3m m = 3p^2 + 4p - 1 \in 2^+$	•
which is - by 3	
o'o if n is not divisible by 3 then n2.	+6n+2
is divisible by 3.	
~	

STHS - EXTENSION 2 - SAMPLE SOLUTIONS 2023 TRIAL HSC PAPER $I_{n} = \int_{0}^{1} (1-x^{2})^{n} dx^{2} \qquad J_{n} = \int_{0}^{1} x^{2} (1-x^{2})^{n} dx$ b) 1) $I_n = \int_0^1 1(1-x^2)^n dx$ = $(1-x^2)^n \cdot x \int_0^1 - \int_0^1 n(1-x^2)^{n-1} \cdot -2x \cdot x \cdot dx$ = $(1-x^2)^n \cdot x \int_0^1 + 2n \int_0^1 x^2 (1-x^2)^{n-1} dx$ = 0 - 0 +2n Jn-1 = 20 Jn-1 ") $\frac{1}{2n}I_{=}J_{n-1}$ $\frac{1}{2n} I_n = \int_0^1 x^2 (1-x^2)^{n-1} dx \qquad \text{change } x^2 \text{ intro}$ $= \int_0^1 (1-x^2-1)(1-x^2)^{n-1} dx \qquad -(1-x^2-1)$ $= \int_0^1 \left[1-(1-x^2)\right](1-x^2)^{n-1} dx$ $= \int_{a}^{b} (1-x^{2})^{n-1} - \int_{a}^{b} (1-x^{2})^{n} dx$ $= I_{n-1} - I_n$ $\left(\frac{1}{2^{n-1}}\right)I_n = I_{n-1}$ $\frac{1+2n}{2n} T_0 = T_{0-1}$ $\frac{I_n = 2n}{1+2n} \frac{I_{n-1}}{1+2n}$ OLane

EXTENSION 2 - SAMPLE SOLUTIONS 2022 TRIAL MSC DADE Show that Jn = In - In+1 nR RHS = In - In+1 $J_n = \int_{-\infty}^{1} x^2 (1-x^2)^n dx$ $= (1/(1-x^2)^2 dx - (1/1-x^2)^2)$ $= \int (1 - x^2 - 1) (1 - x^2) dx$ $= (1(1-x^2)^{(1-(1-x^2))} dx$ $= \int \left[-(1-x^2) + 1 \right] (1-x^2) dx$ $= ((1-x^2)(x^2)dx$ $= \int_{-1}^{1} -(1-x^{2}) + (\frac{1}{2}(1-x^{2})^{n} dx$ $= \int a^2 (1-x^2)^2 dx$ = JA = LHS. $J_{n} = -I_{n+1} + I_{n}$ $J_n = J_n - J_{n+1}$ IV) NOW $I_{n+1} = 2(n+1)$ In using part (1) 2(n+1)+1= 2n+2 In * use this one $\frac{T_{n+1} = 2n T_n + 2 T_n}{2n+3} = \frac{2n+3}{2n+3}$ pa+(11) * $\frac{J_n = I_n - 2n+2 I_n}{2n+3}$ $\frac{1}{2n+3}$ $\frac{1}{2n+3}$ $\frac{1}{2n-1}$ $= \begin{pmatrix} l - 2n+2 \\ 2n+3 \end{pmatrix} \boxed{ I_n }$ = 2n+3 - 2n - 2 In $=\frac{2n}{2n+3}J_{n-1}$ 2n + 3= $\frac{1}{2n+3}$ In OED 61

STUS - EVTENSION 2 - CAMPLE COLUTIONS 2022 Question 16 aa =: +an = [MP] = [MB] $|\vec{MP}| = \cot \frac{x}{2} |\vec{MB}|$ · cot is scalar X $AB = Z_2 - \overline{Z}_1$ $\overrightarrow{AM} = \overrightarrow{MB} = \frac{1}{2} \left(2_2 - 2_1 \right)$ MP = rotation by 90° of MB but also scalar X of MB $\overrightarrow{MP} = i \cot \frac{2}{3} \cdot \frac{1}{2} \left(\frac{2}{2} - \frac{2}{3} \right)$ $11) \frac{1}{OP} = OA + AM + MP$ $= 2_1 + \frac{1}{2}(2_2 - 2_1) + \frac{1}{2}i\cot\frac{\alpha}{2}(2_2 - 2_1)$ $= 2_1 + \frac{1}{2} 2_2 - \frac{1}{2} 2_1 + \frac{1}{2} i \cot \frac{x}{2} 2_2 - \frac{1}{2} i \cot \frac{x}{2} 2_1$ $= \left(1 - \frac{1}{2} - \frac{1}{2}i\cot\frac{x}{2}\right)Z_1 + \left(\frac{1}{2} + \frac{1}{2}i\cot\frac{x}{2}\right)Z_2$ $= \frac{1}{2} \left(1 - i \cot \frac{x}{2} \right) \frac{z_1}{z_1} + \frac{1}{2} \left(1 + i \cot \frac{x}{2} \right) \frac{z_2}{z_2}$ \approx